Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
BMC Biol ; 22(1): 108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714997

RESUMO

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Feromônios/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
2.
Genes (Basel) ; 15(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674409

RESUMO

The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.


Assuntos
Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Fusarium/genética , Fusarium/patogenicidade , Fusarium/metabolismo , Tricotecenos/metabolismo , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fatores de Virulência/genética , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulência/genética , Reprodução/genética
3.
J Phycol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678594

RESUMO

The evolutionary transitions of mating systems between outcrossing and self-fertilization are often suggested to associate with the cytological and genomic changes, but the empirical reports are limited in multicellular organisms. Here we used the unicellular zygnematophycean algae, the Closterium peracerosum-strigosum-littorale (C. psl.) complex, to address whether genomic properties such as genome sizes and chromosome numbers are associated with mating system transitions between homothallism (self-fertility) and heterothallism (self-sterility). Phylogenetic analysis revealed the polyphyly of homothallic strains, suggesting multiple transitions between homothallism and heterothallism in the C. psl. complex. Flow cytometry analysis identified a more than 2-fold genome size variation, ranging from 0.53 to 1.42 Gbp, which was positively correlated with chromosome number variation between strains. Although we did not find consistent trends in genome size change and mating system transitions, the mean chromosome sizes tend to be smaller in homothallic strains than in their relative heterothallic strains. This result suggests that homothallic strains possibly have more fragmented chromosomes, which is consistent with the argument that self-fertilizing populations may tolerate more chromosomal rearrangements.

4.
AoB Plants ; 16(2): plae020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38660050

RESUMO

Abstract. Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. We estimated morph ratios, ramets per genet and heterostylous syndrome and quantified legitimate pollen transfer via clonal growth, pollinators and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. All in all, pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a 'relaxed selection'. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers and a fragmented population.

5.
J Chem Ecol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644437

RESUMO

The natural occurrence, distribution (within a plant) and roles of four phenylbutanoid compounds (anisyl acetone, cue-lure, raspberry ketone and zingerone) are elucidated for the Asia-Pacific and Oceania regions. These phenylbutanoids may act individually or in combination to attract true fruit fly males belonging to a tribe Dacini of subfamily Dacinae (Diptera: Tepritidae). Of special interest are the mutualistic interactions between the Dacini fruit fly males and the tropical daciniphilous (attracting exclusively Dacini fruit flies) orchids - leading to cross pollination for the orchids and enchanced mating success for the flies. When offered to male flies, anisyl acetone and cue-lure are generally converted to raspberry ketone. Upon consumption, raspberry ketone and zingerone are individually sequestered in the male rectal (pheromonal) gland unchanged. Attracted male flies readily imbibe the phenylbutanoid(s) in the floral synomone to compliment the endogenously synthesized male sex pheromonal components - to enhance attraction of conspecific females during courtship as well as attract conspecific males to form 'leks'. The phenylbutanoid(s) may also act as an allomone to deter vertebrate predators, especially geckos, besides possessing antimicrobial and antioxidant activities. Cue-lure, raspberry ketone and zingerone are important attractants/lures used in pest surveillance and mass trapping under the integrated pest management (IPM) program against quarantine Dacini fruit fly pest species, particularly Bactrocera tryoni and Zeugodacus cucurbitae.

6.
Front Plant Sci ; 15: 1358974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559764

RESUMO

Sexual reproduction of Zygnematophyceae by conjugation is a less investigated topic due to the difficulties of the induction of this process and zygospore ripening under laboratory conditions. For this study, we collected field sampled zygospores of Spirogyra mirabilis and three additional Spirogyra strains in Austria and Greece. Serial block-face scanning electron microscopy was performed on high pressure frozen and freeze substituted zygospores and 3D reconstructions were generated, allowing a comprehensive insight into the process of zygospore maturation, involving storage compound and organelle rearrangements. Chloroplasts are drastically changed, while young stages contain both parental chloroplasts, the male chloroplasts are aborted and reorganised as 'secondary vacuoles' which initially contain plastoglobules and remnants of thylakoid membranes. The originally large pyrenoids and the volume of starch granules is significantly reduced during maturation (young: 8 ± 5 µm³, mature: 0.2 ± 0.2 µm³). In contrast, lipid droplets (LDs) increase significantly in number upon zygospore maturation, while simultaneously getting smaller (young: 21 ± 18 µm³, mature: 0.1 ± 0.2 and 0.5 ± 0.9 µm³). Only in S. mirabilis the LD volume increases (34 ± 29 µm³), occupying ~50% of the zygospore volume. Mature zygospores contain barite crystals as confirmed by Raman spectroscopy with a size of 0.02 - 0.05 µm³. The initially thin zygospore cell wall (~0.5 µm endospore, ~0.8 µm exospore) increases in thickness and develops a distinct, electron dense mesospore, which has a reticulate appearance (~1.4 µm) in Spirogyra sp. from Greece. The exo- and endospore show cellulose microfibrils in a helicoidal pattern. In the denser endospore, pitch angles of the microfibril layers were calculated: ~18 ± 3° in S. mirabilis, ~20 ± 3° in Spirogyra sp. from Austria and ~38 ± 8° in Spirogyra sp. from Greece. Overall this study gives new insights into Spirogyra sp. zygospore development, crucial for survival during dry periods and dispersal of this genus.

7.
Proc Natl Acad Sci U S A ; 121(12): e2319235121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466838

RESUMO

A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement of TAD2 and TAD3 orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role of FgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing in Fusarium graminearum. FgTAD2 had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactive FgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations in FgTAD2 that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenous FgTAD2 allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.


Assuntos
Ascomicetos , Edição de RNA , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ascomicetos/genética , Adenosina Desaminase/metabolismo , RNA de Transferência/metabolismo , Isoformas de Proteínas/genética , Adenosina/metabolismo
8.
J Genet Genomics ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490361

RESUMO

The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide. Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping. However, the pervasive clonal lineages of M. oryzae observed in natural fields contradict this expectation. A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation (RIP) in shaping its evolutionary trajectory is essential to bridge this knowledge gap. Here we systematically investigate the RIP and recombination landscapes in M. oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies. Our data reveal that the RIP can robustly capture the population history of M. oryzae, and we provide accurate estimations of the recombination and RIP rates across different M. oryzae clades. Significantly, our results highlight a parent-of-origin bias in both recombination and RIP rates, tightly associating with their sexual potential and variations of effector proteins. This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution. These findings provide unique insights into understanding the evolution of blast fungus.

9.
Proc Natl Acad Sci U S A ; 121(13): e2315531121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498704

RESUMO

Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.


Assuntos
Fertilidade , Reprodução , Reprodução/genética , Eucariotos/genética , Genes Fúngicos Tipo Acasalamento
10.
Ann Bot ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437644

RESUMO

BACKGROUND AND AIMS: Fire may favour plant flowering by opening the vegetation and increasing abiotic resource availability. Increased floral display size can attract more pollinators and increase the absolute fruit and seed production immediately after the fire. However, anthropogenic increases in fire frequency may alter these responses. We aim to assess the effects of fire on pollination and reproductive success of plants at the global scale. METHODS: We performed a systematic literature review and meta-analyses to examine overall fire effects as well as different fire parameters on pollination and on plant reproduction. We also explored to what extent the responses vary among pollinators, pollination vectors, plant regeneration strategies, compatibility systems, vegetation types and biomes. KEY RESULTS: Most studies were conducted in fire-prone ecosystems. Overall, single fires increased pollination and plant reproduction but this effect was overridden by recurrent fires. Floral visitation rates of pollinators were enhanced immediately following a wildfire, and especially in bee-pollinated plants. Fire increased the absolute production of fruits or seeds but not the fruit or seed set. The reproductive benefits were mostly observed in wind-pollinated (graminoids), herbaceous and resprouter species. Finally, fire effects on pollination were positively correlated with fire effects on plant reproductive success. CONCLUSIONS: Fire has a central role in pollination and plant sexual reproduction in fire-prone ecosystems. The increase in the absolute production of fruits and seeds suggests that fire benefits on plant reproduction are likely driven by increased abiotic resources and the consequent floral display size. However, reproduction efficiency, as measured by fruit or seed set, does not increase with fire. In contrast, when assessed on the same plant simultaneously, fire effects on pollination are translated into reproduction. Increased fire frequency due to anthropogenic changes can alter the nature of the response to fire.

11.
Mol Ecol ; 33(8): e17320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506152

RESUMO

Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.


Assuntos
Diatomáceas , Diatomáceas/genética , Reprodução/genética , Meiose , Genoma , Transcriptoma/genética
12.
Fungal Genet Biol ; 171: 103874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307402

RESUMO

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Melaninas/genética , Sistema de Sinalização das MAP Quinases/genética , Aspergillus/genética , Aspergillus/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Elife ; 132024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415774

RESUMO

Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.


Assuntos
Comunicação Celular , Reprodução , Membrana Celular , Cílios , Reconhecimento Psicológico
14.
PeerJ ; 12: e16839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348103

RESUMO

Hieracium lucidum subsp. lucidum is a critically endangered endemic taxa of the Sicilian flora. It is a relict of the Tertiary period surviving on the cliffs of Monte Gallo (NW-Sicily). This research focused on finding the best protocols for seed germination and vegetative and in vitro propagation to contribute to ex situ conservation. Seed germination tests were carried out using constant temperatures of 15 °C, 20 °C and 25 °C in continuous darkness and an alternating temperature of 30/15 °C (16 h/8 h, light/dark). The seeds had no dormancy, and a high germination capacity (70-95%) was obtained at all tested thermoperiods. The possibility of vegetative propagation of the taxon was evaluated through the rooting capacity of stem cuttings treated or not treated with indole-3-butyric acid (IBA). All cuttings were treated with IBA rooted within 2 months, while only 50% of the untreated cuttings were rooted within a longer time. An efficient protocol for rapid in vitro propagation from leaf portions was developed. The response of explants was tested on hormone-free Murashige and Skoog (MS) basal medium and MS enriched with different types of cytokinins: 6-Benzylaminopurine (BAP) and meta-Topolin (mT) in combination with naphthaleneacetic acid (NAA) and 2,4-Dichlorophenoxyacetic acid (2,4-D) at the same concentration. The combination of mT (2 mg L-1) and 2,4-D (1 mg L-1) in the medium was the most effective and showed the highest percentage of callus induction and the mean number of regenerated shoots. The maximum rate of root regeneration and the maximum number and length of roots were obtained on hormone-free MS and MS enriched with IBA at concentrations of 1 mg L-1. From the results obtained, it can be concluded that H. lucidum subsp. lucidum can be successfully propagated using one of the tested techniques, subject to the availability of the material for reproduction.


Assuntos
Asteraceae , Germinação , Germinação/fisiologia , Sementes , Citocininas , Ácido 2,4-Diclorofenoxiacético
15.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38305094

RESUMO

Rice blast fungus (Pyricularia oryzae) is a heterothallic ascomycete that causes the most destructive disease in cultivated rice worldwide. This fungus reproduces sexually and asexually, and its mating type is determined by the MAT1 locus, MAT1-1 or MAT1-2. Interestingly, most rice-infecting field isolates show a loss of female fertility, but the MAT1 locus is highly conserved in female-sterile isolates. In this study, we performed a functional analysis of MAT1 using the CRISPR/Cas9 system in female- and male-fertile isolates and female-sterile (male-fertile) isolates. Consistent with a previous report, MAT1 was essential for sexual reproduction but not for asexual reproduction. Meanwhile, deletion mutants of MAT1-1-1, MAT1-1-2, and MAT1-1-3 exhibited phenotypes different from those of other previously described isolates, suggesting that the function of MAT1-1 genes and/or their target genes in sexual reproduction differs among strains or isolates. The MAT1 genes, excluding MAT1-2-6, retained their functions even in female-sterile isolates, and deletion mutants lead to loss or reduction of male fertility. Although MAT1 deletion did not affect microconidia (spermatia) production, microconidia derived from the mutants could not induce perithecia formation. These results indicated that MAT1 is required for microconidia-mediated male fertility in addition to female fertility in P. oryzae .


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Fertilidade/genética , Ascomicetos/genética , Reprodução/genética , Esporos Fúngicos
16.
Evol Appl ; 17(1): e13627, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38283600

RESUMO

Resistant cultivars are of value for protecting crops from disease, but can be rapidly overcome by pathogens. Several strategies have been proposed to delay pathogen adaptation (evolutionary control), while maintaining effective protection (epidemiological control). Resistance genes can be (i) combined in the same cultivar (pyramiding), (ii) deployed in different cultivars sown in the same field (mixtures) or in different fields (mosaics), or (iii) alternated over time (rotations). The outcomes of these strategies have been investigated principally in pathogens displaying pure clonal reproduction, but many pathogens have at least one sexual event in their annual life cycles. Sexual reproduction may promote the emergence of superpathogens adapted to all the resistance genes deployed. Here, we improved the spatially explicit stochastic model landsepi to include pathogen sexual reproduction, and we used the improved model to investigate the effect of sexual reproduction on evolutionary and epidemiological outcomes across deployment strategies for two major resistance genes. Sexual reproduction favours the establishment of a superpathogen when single mutant pathogens are present together at a sufficiently high frequency, as in mosaic and mixture strategies. However, sexual reproduction did not affect the strategy recommendations for a wide range of mutation probabilities, associated fitness costs, and landscape organisations.

17.
J Physiol ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178567

RESUMO

Because the universe of possible DNA sequences is inconceivably vast, organisms have evolved mechanisms for exploring DNA sequence space while substantially reducing the hazard that would otherwise accrue to any process of random, accidental mutation. One such mechanism is meiotic recombination. Although sexual reproduction imposes a seemingly paradoxical 50% cost to fitness, sex evidently prevails because this cost is outweighed by the advantage of equipping offspring with genetic variation to accommodate environmental vicissitudes. The potential adaptive utility of additional mechanisms for producing genetic variation has long been obscured by a presumption that the vast majority of mutations are deleterious. Perhaps surprisingly, the probability for adaptive variation can be increased by several mechanisms that generate mutations abundantly. Such mechanisms, here called 'mutation protocols', implement implicit 'constraints that deconstrain'. Like meiotic recombination, they produce genetic variation in forms that minimize potential for harm while providing a reasonably high probability for benefit. One example is replication slippage of simple sequence repeats (SSRs); this process yields abundant, reversible mutations, typically with small quantitative effect on phenotype. This enables SSRs to function as adjustable 'tuning knobs'. There exists a clear pathway for SSRs to be shaped through indirect selection favouring their implicit tuning-knob protocol. Several other molecular mechanisms comprise probable components of additional mutation protocols. Biologists might plausibly regard such mechanisms of mutation not primarily as sources of deleterious genetic mistakes but also as potentially adaptive processes for 'exploring' DNA sequence space.

18.
Parasit Vectors ; 17(1): 4, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178172

RESUMO

BACKGROUND: In tropical Africa animal trypanosomiasis is a disease that has severe impacts on the health and productivity of livestock in tsetse fly-infested regions. Trypanosoma congolense savannah (TCS) is one of the main causative agents and is widely distributed across the sub-Saharan tsetse belt. Population genetics analysis has shown that TCS is genetically heterogeneous and there is evidence for genetic exchange, but to date Trypanosoma brucei is the only tsetse-transmitted trypanosome with experimentally proven capability to undergo sexual reproduction, with meiosis and production of haploid gametes. In T. brucei sex occurs in the fly salivary glands, so by analogy, sex in TCS should occur in the proboscis, where the corresponding portion of the developmental cycle takes place. Here we test this prediction using genetically modified red and green fluorescent clones of TCS. METHODS: Three fly-transmissible strains of TCS were transfected with genes for red or green fluorescent protein, linked to a gene for resistance to the antibiotic hygromycin, and experimental crosses were set up by co-transmitting red and green fluorescent lines in different combinations via tsetse flies, Glossina pallidipes. To test whether sex occurred in vitro, co-cultures of attached epimastigotes of one red and one green fluorescent TCS strain were set up and sampled at intervals for 28 days. RESULTS: All interclonal crosses of genetically modified trypanosomes produced hybrids containing both red and green fluorescent proteins, but yellow fluorescent hybrids were only present among trypanosomes from the fly proboscis, not from the midgut or proventriculus. It was not possible to identify the precise life cycle stage that undergoes mating, but it is probably attached epimastigotes in the food canal of the proboscis. Yellow hybrids were seen as early as 14 days post-infection. One intraclonal cross in tsetse and in vitro co-cultures of epimastigotes also produced yellow hybrids in small numbers. The hybrid nature of the yellow fluorescent trypanosomes observed was not confirmed by genetic analysis. CONCLUSIONS: Despite absence of genetic characterisation of hybrid trypanosomes, the fact that these were produced only in the proboscis and in several independent crosses suggests that they are products of mating rather than cell fusion. The three-way strain compatibility observed is similar to that demonstrated previously for T. brucei, indicating that a simple two mating type system does not apply for either trypanosome species.


Assuntos
Trypanosoma congolense , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/genética , Trypanosoma congolense/genética , Gado , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Meiose , Trato Gastrointestinal , Cruzamentos Genéticos
19.
J Fungi (Basel) ; 10(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276025

RESUMO

The ascomycete Podospora anserina is a heterothallic filamentous fungus found mainly on herbivore dung. It is commonly used in laboratories as a model system, and its complete life cycle lasting eight days is well mastered in vitro. The main objective of our team is to understand better the global process of fruiting body development, named perithecia, induced normally in this species by fertilization. Three allelic mutants, named pfd3, pfd9, and pfd23 (for "promoting fruiting body development") obtained by UV mutagenesis, were selected in view of their abilities to promote barren perithecium development without fertilization. By complete genome sequencing of pfd3 and pfd9, and mutant complementation, we identified point mutations in the mcm1 gene as responsible for spontaneous perithecium development. MCM1 proteins are MADS box transcription factors that control diverse developmental processes in plants, metazoans, and fungi. We also identified using the same methods a mutation in the VelC gene as responsible for spontaneous perithecium development in the vacua mutant. The VelC protein belongs to the velvet family of regulators involved in the control of development and secondary metabolite production. A key role of MCM1 and VelC in coordinating the development of P. anserina perithecia with gamete formation and fertilization is highlighted.

20.
New Phytol ; 241(4): 1559-1573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095258

RESUMO

In angiosperms, basic leucine-zipper (bZIP) TGACG-motif-binding (TGA) transcription factors (TFs) regulate developmental and stress-related processes, the latter often involving NON EXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) coregulator interactions. To gain insight into their functions in an early diverging land-plant lineage, the single MpTGA and sole MpNPR genes were investigated in the liverwort Marchantia polymorpha. We generated Marchantia MpTGA and MpNPR knockout and overexpression mutants and conducted morphological, transcriptomic and expression studies. Furthermore, we investigated MpTGA interactions with wild-type and mutagenized MpNPR and expanded our analyses including TGA TFs from two streptophyte algae. Mptga mutants fail to induce the switch from vegetative to reproductive development and lack gametangiophore formation. MpTGA and MpNPR proteins interact and Mpnpr mutant analysis reveals a novel coregulatory NPR role in sexual reproduction. Additionally, MpTGA acts independently of MpNPR as a repressor of oil body (OB) formation and can thereby affect herbivory. The single MpTGA TF exerts a dual role in sexual reproduction and OB formation in Marchantia. Common activities of MpTGA/MpNPR in sexual development suggest that coregulatory interactions were established after emergence of land-plant-specific NPR genes and contributed to the diversification of TGA TF functions during land-plant evolution.


Assuntos
Marchantia , Gotículas Lipídicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Reprodução , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...